Comparative Analysis of Forecasting Models for Student Enrollment in Kazakhstan's General Secondary Education System

Authors

DOI:

https://doi.org/10.31489/2025ec4/1200

Keywords:

student enrollment forecasting, educational planning, demographic modeling, time series analysis, Kazakhstan education system, regional analysis

Abstract

Мы сравнили семь моделей прогнозирования численности учащихся в школах Казахстана, используя данные за 2020-2024
годы. Мы протестировали когортные компонентные модели, когортные модели выживаемости, трендовую регрессию с демографическими факторами, линейные
трендовые модели, экспоненциальное сглаживание, многофакторную регрессию и взвешенные скользящие средние по 20 регионам (17
регионам и 3 городам) с примерно 3,9 миллионами учащихся. Точность каждой модели измерялась с помощью средней абсолютной
процентной ошибки (MAPE). Мы обучили модели на данных за 2020-2023 годы и протестировали их на данных за 2024 год. Линейная трендовая
модель показала наилучшие результаты: MAPE составила 0,70 % в масштабах страны и 0,77 % по регионам. Демографические модели оказались менее эффективными
— когортные модели показали плохие результаты на региональном уровне, несмотря на наличие хорошей теоретической основы. Наши прогнозы
на 2025-2027 годы показывают рост числа учащихся в стране с 3,9 млн до 4,2 млн человек, однако темпы роста сильно различаются по
регионам. В крупных городах, таких как Астана, рост составит 24,05%, а в Алматы — 12,81%, в то время как в некоторых регионах рост будет незначительным. Наши
результаты помогают специалистам по планированию образования выбирать правильные методы прогнозирования для разных регионов. Это исследование восполняет пробел
в исследованиях постсоветских стран, где подробные оценки прогнозов найти сложно.

References

Aji, B.W., Septiani, N.Z., Putri, W.M., Irawanto, B., Surarso, B., Farikhin, & Dasril, Y. (2023). Prediction of Indonesia

school enrollment rate by using adaptive neuro fuzzy inference system. Indonesian Journal of Artificial Intelligence

and Data Mining, 6(1), 40–46.

Aksenova, S.S., Zhang, D., & Lu, M. (2006). Enrollment prediction through data mining. In Proceedings of the 2006

International Conference on Data Mining (pp. 510–515). IEEE.

Bernhardt, V.L., Pullum, T.W., & Graham, S.N. (1983, April). Seattle’s small-area approach to forecasting enrollments

at the school level. Paper presented at the Annual Meeting of the American Educational Research Association, Montreal, Canada.

Braden, B., & Others. (1972). Enrollment forecasting handbook introducing confidence limit computations for a cohortsurvival technique. New England School Development Council; Educational Facilities Laboratories, Inc.

Chen, C.-C., Chen, Y., & Kang, C.-Y. (2021). Estimating student-teacher ratio with ARIMA for primary education in

fluctuating enrollment. ICIC Express Letters, Part B: Applications, 12(6), 515–523.

Chen, Q. (2022). A comparative study on the forecast models of the enrollment proportion of general education and

vocational education. International Education Studies, 15(6), 109–126. https://doi.org/10.5539/ies.v15n6p109

Fabricant, R., & Weinman, J. (1972). Forecasting first grade public school enrollment by neighborhood. Demography,

9(4), 625–632.

GLA Intelligence. (2018). 2018 GLA school place demand projections. Greater London Authority.

Grip, R.S., & Grip, M.L. (2019). Using multiple methods to provide prediction bands of K-12 enrollment projections.

Population Research and Policy Review, 38(5), 635–650. https://doi.org/10.1007/s11113-019-09533-2

Haynes, D.A. II. (2014). Improving enrollment projections through the application of geographic principles: Iowa

1999–2011 (Doctoral dissertation). University of Iowa.

Huynh Van, S., Nguyen Thi, H., Nguyen Vinh, K., Sam Vinh, L., & Giang Thien, V. (2019). Forecasting the results of

students attending school in Vietnam by geographical area. International Journal of Education and Practice, 7(3),

274–285. https://doi.org/10.18488/journal.61.2019.73.274.285

Hussar, W.J., & Bailey, T.M. (2016). Projections of education statistics to 2024 (NCES 2016-013). U.S. Department of

Education, National Center for Education Statistics.

James, F. (2021). Neural network-based time series forecasting of student enrollment with exponential smoothing baseline and statistical analysis of performance (Master’s report). Kansas State University.

Kornelio, S., Balan, R.T., & Deogratias, E. (2024). Forecasting students’ enrolment in Tanzania government primary

schools from 2021 to 2035 using ARIMA model. International Journal of Curriculum and Instruction, 16(1), 162–

174.

Langley, R.J. (1997). The use and development of geographical information systems (GIS) and spatial modelling for

educational planning (Doctoral dissertation). University of Leeds.

Lavilles, R.Q., & Arcilla, M.J.B. (2012). Enrollment forecasting for school management system. International Journal

of Modeling and Optimization, 2(5), 563–566.

Marinoiu, C. (2014). Modeling and forecasting the gross enrollment ratio in Romanian primary school. Annals of the

Constantin Brâncuși University of Târgu Jiu, Economy Series, 3, 17–22.

Miller, M.A. (2008). Planning for enrollment growth using land use data to determine future school sites. Transportation Research Record, 2074(1), 12–20. https://doi.org/10.3141/2074-02

Pajankar, V.D., & Srivastava, S. (2019). An approach of estimating school enrolment with reconstructive cohort approach. Journal of Physics: Conference Series, 1366, 012116. https://doi.org/10.1088/1742-6596/1366/1/012116

Pedamallu, C.S., Ozdamar, L., Ganesh, L.S., Weber, G.-W., & Kropat, E. (2010). A system dynamics model for improving primary education enrollment in a developing country. Organizacija, 43(3), 90–100.

https://doi.org/10.2478/v10051-010-0010-5

Proehl, R.S. (2000). Enrollment forecast for Horizon Christian School 2005–2015. Population Research Center, Portland State University. https://pdxscholar.library.pdx.edu/enrollmentforecasts/71

Rynerson, C., & Ollinger, J. (2018). Portland Public Schools enrollment forecasts 2018–19 to 2032–33. Population

Research Center, Portland State University. https://pdxscholar.library.pdx.edu/enrollmentforecasts/123

Duman Tleuzhan, Alexandr Pilipenko, Kuandyk Tleuzhanuly

48 Buketov Business Review 2025, 30, 4(120)

Rynerson, C., & Wei, C. (2021). Centennial School District enrollment forecasts 2021–22 to 2030–31. Population Research Center, Portland State University. https://pdxscholar.library.pdx.edu/enrollmentforecasts/148

Rynerson, C., & Wei, C. (2022). Salem-Keizer Public Schools enrollment forecast 2022–23 to 2041–42. Population

Research Center, Portland State University. https://pdxscholar.library.pdx.edu/enrollmentforecasts/139

Sahane, M., Sirsat, S., Khan, R., & Aglave, B. (2014). Prediction of primary pupil enrollment in government school

using data mining forecasting technique. International Journal of Advanced Research in Computer Science and

Software Engineering, 4(9), 656–661.

Shafii, N.H., Alias, R., Shamsudin, S.R., & Nasir, D.S.M. (2021). Fuzzy time series for projecting school enrolment in

Malaysia. Journal of Computing Research and Innovation, 6(1), 11–21. https://doi.org/10.24191/jcrinn.v6i1.180

Stronge, W.B., & Schultz, R.R. (1981). Models for projecting school enrollment. Educational Evaluation and Policy

Analysis, 3(5), 75–81.

Sweeney, S.H., & Middleton, E.J. (2005). Multiregional cohort enrollment projections: Matching methods to enrollment

policies. Population, Space and Place, 11(5), 361–379. https://doi.org/10.1002/psp.379

Tang, H.-W.V., & Yin, M.-S. (2012). Forecasting performance of grey prediction for education expenditure and school

enrollment. Economics of Education Review, 31(4), 452–462. https://doi.org/10.1016/j.econedurev.2011.12.007

Wang, Q., Wang, Y., & Wang, G. (2023). Research on space potential excavating of existing primary school under the

base of schooling demand forecasting model: A case study in new urban districts. Ain Shams Engineering Journal,

14, 101871. https://doi.org/10.1016/j.asej.2022.101871

Yan, B. (2024). Dynamic analysis of influencing factors and forecast of development trend of “disappearance of rural

primary schools.” Journal of Service Science and Management, 17(1), 75–88.

https://doi.org/10.4236/jssm.2024.171003

Downloads

Published

2025-12-30

How to Cite

Tleuzhan, D., Pilipenko, A., & Tleuzhanuly, K. (2025). Comparative Analysis of Forecasting Models for Student Enrollment in Kazakhstan’s General Secondary Education System. BUKETOV BUSINESS REVIEW, 12030(4), 36–48. https://doi.org/10.31489/2025ec4/1200

Issue

Section

Innovations in Management, Marketing, Finance, Accounting, Economics and Public Administration.